Enable javascript in your browser for better experience. Need to know to enable it? Go here.
本页面中的信息并不完全以您的首选语言展示,我们正在完善其他语言版本。想要以您的首选语言了解相关信息,可以点击这里下载PDF。
更新于 : Nov 20, 2019
不在本期内容中
这一条目不在当前版本的技术雷达中。如果它出现在最近几期中,那么它很有可能仍然具有相关参考价值。如果这一条目出现在更早的雷达中,那么它很有可能已经不再具有相关性,我们的评估将不再适用于当下。很遗憾我们没有足够的带宽来持续评估以往的雷达内容。 了解更多
Nov 2019
试验 ?

TensorFlow的2.0版本保持了其作为业界领先的机器学习框架的突出地位。TensorFlow最初是一个数字处理程序包,后来逐渐扩展为包括支持各种机器学习方法和执行环境(从移动CPU到大型GPU群集)的库。在此过程中,出现了许多框架,以简化网络创建和训练的任务。同时,其他框架(尤其是PyTorch)提供了一种命令式编程模型,该模型使调试和执行变得越来越容易。TensorFlow 2.0现在默认为命令流(立即执行),并采用Keras作为单个高阶API。尽管这些更改提高了TensorFlow的可用性并使其较PyTorch更具竞争力,但这是一次重大的重写,常常破坏向后兼容性——TensorFlow生态系统中的许多工具和服务框架都无法立即适配新版本。目前,请考虑是否要在TensorFlow 2.0中进行设计和试验,或恢复到版本1以在生产环境中服务和运行模型。

Nov 2016
评估 ?

Google's TensorFlow is an open source machine-learning platform that can be used for everything from research through to production and will run on hardware from a mobile CPU all the way to a large GPU compute cluster. It's an important platform because it makes implementing deep-learning algorithms much more accessible and convenient. Despite the hype, though, TensorFlow isn't really anything new algorithmically: All of these techniques have been available in the public domain via academia for some time. It's also important to realize that most businesses are not yet doing even basic predictive analytics and that jumping to deep learning likely won't help make sense of most data sets. For those who do have the right problem and data set, however, TensorFlow is a useful toolkit.

Apr 2016
评估 ?
发布于 : Apr 05, 2016

下载 PDF

 

English | Español | Português | 中文

订阅技术雷达简报

 

立即订阅

查看存档并阅读往期内容