Enable javascript in your browser for better experience. Need to know to enable it? Go here.

Verifiable credentials

Last updated : Apr 26, 2023
NOT ON THE CURRENT EDITION
This blip is not on the current edition of the Radar. If it was on one of the last few editions, it is likely that it is still relevant. If the blip is older, it might no longer be relevant and our assessment might be different today. Unfortunately, we simply don't have the bandwidth to continuously review blips from previous editions of the Radar. Understand more
Apr 2023
Trial ?

When we first included it in the Radar three years ago, verifiable credentials (VC) was an intriguing standard with some promising potential applications, but it wasn't widely known or understood outside the community of enthusiasts. This was particularly true when it came to the credential-granting institutions, such as state governments, who would be responsible for implementing the standards. Three years and one pandemic later, the demand for cryptographically secure, privacy-respecting and machine-verifiable electronic credentials has grown and, as a result, governments are starting to wake up to VC's potential. The W3C standard puts credential holders at the center, which is similar to our experience when using physical credentials: users can put their verifiable credentials in their own digital wallets and show them to anyone at any time without the permission of the credentials' issuer. This decentralized approach also helps users to better manage and selectively disclose their own information which greatly improves data privacy protection.

Several of our teams have engaged in projects involving verifiable credentials technology in the past six months. Not surprisingly, the scenarios vary across countries and government departments. Our team has explored different combinations of decentralized identifiers, verifiable credentials and verifiable presentation on multiple projects. This is a developing field, and now that we've had more experience, we want to keep track of it in the Radar.

Oct 2022
Assess ?

When we first included it in the Radar two years ago, verifiable credentials (VC) was an intriguing standard with some promising potential applications, but it wasn't widely known or understood outside the community of enthusiasts. This was particularly true when it came to the credential-granting institutions, such as state governments, who would be responsible for implementing the standards. Two years and one pandemic later, the demand for cryptographically secure, privacy-respecting and machine-verifiable electronic credentials has grown and, as a result, governments are starting to wake up to VC's potential. We're now starting to see VC crop up in our work for public-sector clients. The W3C standard puts credential holders at the center, which is similar to our experience when using physical credentials: users can put their verifiable credentials in their own digital wallets and show them to anyone at any time without the permission of the credentials' issuer. This decentralized approach also enables users to better manage and selectively disclose their own information which greatly improves data privacy protection. For example, powered by zero-knowledge proof technology, you can construct a verifiable credential to prove that you're an adult without revealing your birthday. It’s important to note that although many VC-based decentralized identity solutions rely on blockchain technology, blockchain is not a prerequisite for all VC implementations.

Oct 2020
Assess ?

Credentials are everywhere in our lives and include passports, driver’s licenses and academic certificates. However, most digital credentials today are simple data records from information systems that are easy to modify and forge and often expose unnecessary information. In recent years, we've seen the continuous maturity of Verifiable Credentials solve this issue. The W3C standard defines it in a way that is cryptographically secure, privacy respecting and machine verifiable. The model puts credential holders at the center, which is similar to our experience when using physical credentials: users can put their verifiable credentials in their own digital wallets and show them to anyone at any time without the permission of the credentials’ issuer. This decentralized approach also enables users to better manage their own information and selectively disclose certain information and greatly improves data privacy protection. For example, powered by zero-knowledge proof technology, you can construct a verifiable credential to prove that you are an adult without revealing your birthday. The community has developed many use cases around verifiable credentials. We've implemented our own COVID health certification with reference to the COVID-19 Credentials Initiative (CCI). Although verifiable credentials don't rely on blockchain technology or decentralized identity, this technique often works with DID in practice and uses blockchain as a verifiable data registry. Many decentralized identity frameworks are also embedded with verifiable credentials.

Published : Oct 28, 2020

Download the PDF

 

 

 

English | Español | Português | 中文

Sign up for the Technology Radar newsletter

 

Subscribe now

Visit our archive to read previous volumes