Enable javascript in your browser for better experience. Need to know to enable it? Go here.
本页面中的信息并不完全以您的首选语言展示,我们正在完善其他语言版本。想要以您的首选语言了解相关信息,可以点击这里下载PDF。
更新于 : Mar 29, 2017
不在本期内容中
这一条目不在当前版本的技术雷达中。如果它出现在最近几期中,那么它很有可能仍然具有相关参考价值。如果这一条目出现在更早的雷达中,那么它很有可能已经不再具有相关性,我们的评估将不再适用于当下。很遗憾我们没有足够的带宽来持续评估以往的雷达内容。 了解更多
Mar 2017
评估 ?

JuMP is a domain-specific language for mathematical optimizations in Julia. JuMP defines a common API called MathProgBase and enables users to write solver-agnostic code in Julia. Currently supported solvers include Artelys Knitro, Bonmin, Cbc, Clp, Couenne, CPLEX, ECOS, FICO Xpress, GLPK, Gurobi, Ipopt, MOSEK, NLopt and SCS. One other benefit is the implementation of automatic differentiation technique in reverse mode to compute derivatives so users are not limited to the standard operators like sin, cos, log and sqrt but can also implement their own custom objective functions in Julia.

Nov 2016
评估 ?

JuMP is a domain-specific language for mathematical optimizations in Julia. JuMP defines a common API called MathProgBase and enables users to write solver-agnostic code in Julia. Currently supported solvers include Artelys Knitro, Bonmin, Cbc, Clp, Couenne, CPLEX, ECOS, FICO Xpress, GLPK, Gurobi, Ipopt, MOSEK, NLopt and SCS. One other benefit is the implementation of automatic differentiation technique in reverse mode to compute derivatives so users are not limited to the standard operators like sin, cos, log and sqrt but can also implement their own custom objective functions in Julia.

发布于 : Nov 07, 2016

下载 PDF

 

English | Español | Português | 中文

订阅技术雷达简报

 

立即订阅

查看存档并阅读往期内容