Enable javascript in your browser for better experience. Need to know to enable it? Go here.

Apache Spark

本页面中的信息并不完全以您的首选语言展示,我们正在完善其他语言版本。想要以您的首选语言了解相关信息,可以点击这里下载PDF。
更新于 : Nov 10, 2015
不在本期内容中
这一条目不在当前版本的技术雷达中。如果它出现在最近几期中,那么它很有可能仍然具有相关参考价值。如果这一条目出现在更早的雷达中,那么它很有可能已经不再具有相关性,我们的评估将不再适用于当下。很遗憾我们没有足够的带宽来持续评估以往的雷达内容。 了解更多
Nov 2015
试验 ?

Apache Spark has been steadily gaining ground as a fast and general engine for large-scale data processing. The engine is written in Scala and is well suited for applications that reuse a working set of data across multiple parallel operations. It’s designed to work as a standalone cluster or as part of Hadoop YARN cluster. It can access data from sources such as HDFS, Cassandra, S3 etc. Spark also offers many higher level operators in order to ease the development of data parallel applications. As a generic data processing platform it has enabled development of many higher level tools such as interactive SQL (Spark SQL), real time streaming (Spark Streaming), machine learning library (MLib), R-on-Spark etc.

May 2015
试验 ?
Jan 2015
评估 ?

For iterative processing such as machine learning and interactive analysis, Hadoop map-reduce does not work very well because of its batch-oriented nature. Spark is a fast and general engine for large-scale data processing. It aims to extend map-reduce for iterative algorithms and interactive low latency data mining. It also ships with a machine learning library.

Jul 2014
评估 ?
For iterative processing such as machine learning and interactive analysis, Hadoop map-reduce does not work very well because of its batch-oriented nature. Spark is a fast and general engine for large-scale data processing. It aims to extend map-reduce for iterative algorithms and interactive low latency data mining. It also ships with a machine learning library.
发布于 : Jul 08, 2014

下载 PDF

 

English | Español | Português | 中文

订阅技术雷达简报

 

立即订阅

查看存档并阅读往期内容