Enable javascript in your browser for better experience. Need to know to enable it? Go here.

Enterprise Data Warehouse

本页面中的信息并不完全以您的首选语言展示,我们正在完善其他语言版本。想要以您的首选语言了解相关信息,可以点击这里下载PDF。
更新于 : Jul 08, 2014
不在本期内容中
这一条目不在当前版本的技术雷达中。如果它出现在最近几期中,那么它很有可能仍然具有相关参考价值。如果这一条目出现在更早的雷达中,那么它很有可能已经不再具有相关性,我们的评估将不再适用于当下。很遗憾我们没有足够的带宽来持续评估以往的雷达内容。 了解更多
Jul 2014
暂缓 ?
While centralized integration of data for analysis and reporting remains a good strategy, traditional Enterprise Data Warehouse (EDW) initiatives have a higher than 50% failure rate. Big up-front data modeling results in overbuilt warehouses that take years to deliver and are expensive to maintain. We are placing these old-style EDWs and techniques on hold in this edition of the radar. Instead, we advocate evolving towards an EDW. Test and learn by building small, valuable increments that are frequently released to production. Nontraditional tools and techniques can help, for example using a Data Vault schema design or even a NoSQL document store such as HDFS.
Jan 2014
暂缓 ?
发布于 : Jan 28, 2014

下载 PDF

 

English | Español | Português | 中文

订阅技术雷达简报

 

立即订阅

查看存档并阅读往期内容