Enable javascript in your browser for better experience. Need to know to enable it? Go here.
发布于 : Nov 20, 2019
不在本期内容中
这一条目不在当前版本的技术雷达中。如果它出现在最近几期中,那么它很有可能仍然具有相关参考价值。如果这一条目出现在更早的雷达中,那么它很有可能已经不再具有相关性,我们的评估将不再适用于当下。很遗憾我们没有足够的带宽来持续评估以往的雷达内容。 了解更多
Nov 2019
评估 ?

目前,围绕神经网络的相关工具和框架的生态系统正在迅速地发展。但是,这些框架和工具之间的互通性也成为一个挑战。在机器学习领域,通常需要在一种工具中快速进行原型设计和训练,然后将其部署到其他工具中进行推理。因为这些工具的内部格式并不兼容,为了使他们兼容,我们需要实现并维护很多麻烦的转换器。开放神经网络交换格式ONNX的出现,就是为解决这一问题。在ONNX中,表示神经网络的图形由标准规格的操作符和一系列表示训练权重和神经网络模型的格式所组成,这些图形可以在不同的工具间传递。这种一致的格式带来了很多的可能性,其中之一就是Model Zoo,它是一系列基于ONNX格式的预训练模型的集合。

下载 PDF

 

English | Español | Português | 中文

订阅技术雷达简报

 

立即订阅

查看存档并阅读往期内容