发布于 : May 15, 2018
不在本期内容中
这一条目不在当前版本的技术雷达中。如果它出现在最近几期中,那么它很有可能仍然具有相关参考价值。如果这一条目出现在更早的雷达中,那么它很有可能已经不再具有相关性,我们的评估将不再适用于当下。很遗憾我们没有足够的带宽来持续评估以往的雷达内容。
了解更多
May 2018
评估
We're seeing some interesting reports of using Jupyter for automated testing. The ability to mix code, comments and output in the same document reminds us of FIT, FitNesse and Concordion. This flexible approach is particularly useful if your tests are data heavy or rely on some statistical analysis such as performance testing. Python provides all the power you need, but as tests grow in complexity, a way to manage suites of notebooks would be helpful.