发布于 : Sep 27, 2023
不在本期内容中
这一条目不在当前版本的技术雷达中。如果它出现在最近几期中,那么它很有可能仍然具有相关参考价值。如果这一条目出现在更早的雷达中,那么它很有可能已经不再具有相关性,我们的评估将不再适用于当下。很遗憾我们没有足够的带宽来持续评估以往的雷达内容。
了解更多
Sep 2023
试验
ReAct 提示工程 是一种用于提示大语言模型的方法,相较于思维链 (CoT)等竞争方法,ReAct 旨在提高大语言模型的响应准确性。这一方法在一份2022年的论文中首次提出,其原理是将推理和行动结合起来(因此称为ReAct)。这种方法有助于使大语言模型的响应更具解释性,相对于思维链减少了虚构性内容,从而提高了提示者获得他们想要的内容的机会。最初,LangChain 是为支持这种提示方式而开发的。基于 ReAct 的自主代理已被证明是我们团队构建的大语言模型应用中使用最广泛的一种。最近,OpenAI 在其 API 中引入了函数调用以使 ReAct 和类似的提示风格更容易实现,而无需依赖像 LangChain 这样的外部工具。我们仍然处于定义这一学科的早期阶段,但到目前为止,ReAct 及其后继方法已指引出大语言模型最令人兴奋的一些应用领域。