Enable javascript in your browser for better experience. Need to know to enable it? Go here.
La información en esta página no se encuentra completamente disponible en tu idioma de preferencia. Muy pronto esperamos tenerla completamente disponible en otros idiomas. Para obtener información en tu idioma de preferencia, por favor descarga el PDF aquí.
Última actualización : Mar 29, 2017
NO EN LA EDICIÓN ACTUAL
Este blip no está en la edición actual del Radar. Si ha aparecido en una de las últimas ediciones, es probable que siga siendo relevante. Si es más antiguo, es posible que ya no sea relevante y que nuestra valoración sea diferente hoy en día. Desgraciadamente, no tenemos el ancho de banda necesario para revisar continuamente los anuncios de ediciones anteriores del Radar. Entender más
Mar 2017
Evaluar ?

Nuance Mix is a framework for natural language processing from the company that created the speech-to-text technology behind Dragon Speaking and the first roll-out of Siri. This framework supports the creation of grammars that allow for free-form user interaction via voice. The developer defines a domain-specific grammar that the framework can train itself to understand. The outcomes are responses to user input that identify the user's intents and interaction concepts. At first, it is limited to phrases close to the ones used to train it, but over time it can start to identify meaning from more divergent phrasing. Though it is still in beta, the accuracy from early exploration has been compelling, and the eventual product is one to watch for application forms that could benefit from hands-free user interaction—including mobile, IoT, AR, VR and interactive spaces.

Nov 2016
Evaluar ?

Nuance Mix is a framework for natural language processing from the company that created the speech-to-text technology behind Dragon Speaking and the first roll-out of Siri. This framework supports the creation of grammars that allow for free-form user interaction via voice. The developer defines a domain-specific grammar that the framework can train itself to understand. The outcomes are responses to user input that identify the user's intents and interaction concepts. At first, it is limited to phrases close to the ones used to train it, but over time it can start to identify meaning from more divergent phrasing. Though it is still in beta, the accuracy from early exploration has been compelling, and the eventual product is one to watch for application forms that could benefit from hands-free user interaction—including mobile, IoT, AR, VR and interactive spaces.

Publicado : Nov 07, 2016

Descarga el PDF

 

 

 

English | Español | Português | 中文

Suscríbete al boletín informativo de Technology Radar

 

 

 

 

Suscríbete ahora

Visita nuestro archivo para leer los volúmenes anteriores