Enable javascript in your browser for better experience. Need to know to enable it? Go here.
La información en esta página no se encuentra completamente disponible en tu idioma de preferencia. Muy pronto esperamos tenerla completamente disponible en otros idiomas. Para obtener información en tu idioma de preferencia, por favor descarga el PDF aquí.
Última actualización : Mar 29, 2017
NO EN LA EDICIÓN ACTUAL
Este blip no está en la edición actual del Radar. Si ha aparecido en una de las últimas ediciones, es probable que siga siendo relevante. Si es más antiguo, es posible que ya no sea relevante y que nuestra valoración sea diferente hoy en día. Desgraciadamente, no tenemos el ancho de banda necesario para revisar continuamente los anuncios de ediciones anteriores del Radar. Entender más
Mar 2017
Evaluar ?

It has long been known that "anonymized" bulk data sets can reveal information about individuals, especially when multiple data sets are cross-referenced together. With increasing concern over personal privacy, some companies—including Apple and Google—are turning to differential privacy techniques in order to improve individual privacy while retaining the ability to perform useful analytics on large numbers of users. Differential privacy is a cryptographic technique that attempts to maximize the accuracy of statistical queries from a database while minimizing the chances of identifying its records. These results can be achieved by introducing a low amount of "noise" to the data, but it's important to note that this is an ongoing research area. Apple has announced plans to incorporate differential privacy into its products—and we wholeheartedly applaud its commitment to customers' privacy—but the usual Apple secrecy has left some security experts scratching their heads. We continue to recommend Datensparsamkeit as an alternative approach: simply storing the minimum data you actually need will achieve better privacy results in most cases.

Nov 2016
Evaluar ?

It has long been known that "anonymized" bulk data sets can reveal information about individuals, especially when multiple data sets are cross-referenced together. With increasing concern over personal privacy, some companies—including Apple and Google—are turning to differential privacy techniques in order to improve individual privacy while retaining the ability to perform useful analytics on large numbers of users. Differential privacy is a cryptographic technique that attempts to maximize the accuracy of statistical queries from a database while minimizing the chances of identifying its records. These results can be achieved by introducing a low amount of "noise" to the data, but it’s important to note that this is an ongoing research area. Apple has announced plans to incorporate differential privacy into its products—and we wholeheartedly applaud its commitment to customers' privacy—but the usual Apple secrecy has left some security experts scratching their heads. We continue to recommend Datensparsamkeit as an alternative approach: simply storing the minimum data you actually need will achieve better privacy results in most cases.

Publicado : Nov 07, 2016

Descarga el PDF

 

 

 

English | Español | Português | 中文

Suscríbete al boletín informativo de Technology Radar

 

 

 

 

Suscríbete ahora

Visita nuestro archivo para leer los volúmenes anteriores