Publicado : Oct 23, 2024
NO EN LA EDICIÓN ACTUAL
Este blip no está en la edición actual del Radar. Si ha aparecido en una de las últimas ediciones, es probable que siga siendo relevante. Si es más antiguo, es posible que ya no sea relevante y que nuestra valoración sea diferente hoy en día. Desgraciadamente, no tenemos el ancho de banda necesario para revisar continuamente los anuncios de ediciones anteriores del Radar.
Entender más
Oct 2024
Probar
Al desarrollar aplicaciones LLM basadas en generación mejorada por recuperación (RAG por sus siglas en inglés), la calidad de los embeddings impacta directamente tanto en la recuperación de documentos relevantes como en la calidad de las respuestas. Aplicar fine-tuning a embeddings puede mejorar la precisión y relevancia de los embeddings para tareas o dominios específicos. Nuestros equipos hicieron fine-tuning a los embeddings al desarrollar aplicaciones LLM de dominios específicos, donde la extracción de información precisa es crucial. Sin embargo, hay que considerar las ventajas y desventajas de este enfoque antes de apresurarse a afinarlos.
