Kubernetes natively supports a key-value object known as a secret. However, by default, Kubernetes secrets aren't really secret. They're handled separately from other key-value data so that precautions or access control can be applied separately. There is support for encrypting secrets before they are stored in etcd, but the secrets start out as plain text fields in configuration files. Sealed Secrets is a combination operator and command-line utility that uses asymmetric keys to encrypt secrets so that they can only be decrypted by the controller in the cluster. This process ensures that the secrets won't be compromised while they sit in the configuration files that define a Kubernetes deployment. Once encrypted, these files can be safely shared or stored alongside other deployment artifacts.
Kubernetes natively supports a key-value object known as a secret. However, by default, Kubernetes secrets aren't really secret. They're handled separately from other key-value data so that precautions or access control can be applied separately. There is support for encrypting secrets before they are stored in etcd, but the secrets start out as plain text fields in configuration files. Sealed Secrets is a combination operator and command-line utility that uses asymmetric keys to encrypt secrets so that they can only be decrypted by the controller in the cluster. This process ensures that the secrets won't be compromised while they sit in the configuration files that define a Kubernetes deployment. Once encrypted, these files can be safely shared or stored alongside other deployment artifacts.