Enable javascript in your browser for better experience. Need to know to enable it? Go here.
本页面中的信息并不完全以您的首选语言展示,我们正在完善其他语言版本。想要以您的首选语言了解相关信息,可以点击这里下载PDF。
更新于 : Nov 30, 2017
不在本期内容中
这一条目不在当前版本的技术雷达中。如果它出现在最近几期中,那么它很有可能仍然具有相关参考价值。如果这一条目出现在更早的雷达中,那么它很有可能已经不再具有相关性,我们的评估将不再适用于当下。很遗憾我们没有足够的带宽来持续评估以往的雷达内容。 了解更多
Nov 2017
评估 ?

Keras is a high-level interface in Python for building neural networks. Created by a Google engineer, Keras is open source and runs on top of either TensorFlow or Theano. It provides an amazingly simple interface for creating powerful deep-learning algorithms to train on CPUs or GPUs. Keras is well designed with modularity, simplicity, and extensibility in mind. Unlike a library such as Caffe, Keras supports more general network architectures such as recurrent nets, making it overall more useful for text analysis, NLP and general machine learning. If computer vision, or any other specialized branch of machine learning, is your primary concern, Caffe may be a more appropriate choice. However, if you’re looking to learn a simple yet powerful framework, Keras should be your first choice.

Mar 2017
评估 ?

Keras is a high-level interface in Python for building neural networks. Created by a Google engineer, Keras is open source and runs on top of either TensorFlow or Theano. It provides an amazingly simple interface for creating powerful deep-learning algorithms to train on CPUs or GPUs. Keras is well designed with modularity, simplicity, and extensibility in mind. Unlike a library such as Caffe, Keras supports more general network architectures such as recurrent nets, making it overall more useful for text analysis, NLP and general machine learning. If computer vision, or any other specialized branch of machine learning, is your primary concern, Caffe may be a more appropriate choice. However, if you're looking to learn a simple yet powerful framework, Keras should be your first choice.

发布于 : Mar 29, 2017

下载 PDF

 

English | Español | Português | 中文

订阅技术雷达简报

 

立即订阅

查看存档并阅读往期内容