Enable javascript in your browser for better experience. Need to know to enable it? Go here.
La información en esta página no se encuentra completamente disponible en tu idioma de preferencia. Muy pronto esperamos tenerla completamente disponible en otros idiomas. Para obtener información en tu idioma de preferencia, por favor descarga el PDF aquí.
Última actualización : Nov 30, 2017
NO EN LA EDICIÓN ACTUAL
Este blip no está en la edición actual del Radar. Si ha aparecido en una de las últimas ediciones, es probable que siga siendo relevante. Si es más antiguo, es posible que ya no sea relevante y que nuestra valoración sea diferente hoy en día. Desgraciadamente, no tenemos el ancho de banda necesario para revisar continuamente los anuncios de ediciones anteriores del Radar. Entender más
Nov 2017
Evaluar ?

Keras is a high-level interface in Python for building neural networks. Created by a Google engineer, Keras is open source and runs on top of either TensorFlow or Theano. It provides an amazingly simple interface for creating powerful deep-learning algorithms to train on CPUs or GPUs. Keras is well designed with modularity, simplicity, and extensibility in mind. Unlike a library such as Caffe, Keras supports more general network architectures such as recurrent nets, making it overall more useful for text analysis, NLP and general machine learning. If computer vision, or any other specialized branch of machine learning, is your primary concern, Caffe may be a more appropriate choice. However, if you’re looking to learn a simple yet powerful framework, Keras should be your first choice.

Mar 2017
Evaluar ?

Keras is a high-level interface in Python for building neural networks. Created by a Google engineer, Keras is open source and runs on top of either TensorFlow or Theano. It provides an amazingly simple interface for creating powerful deep-learning algorithms to train on CPUs or GPUs. Keras is well designed with modularity, simplicity, and extensibility in mind. Unlike a library such as Caffe, Keras supports more general network architectures such as recurrent nets, making it overall more useful for text analysis, NLP and general machine learning. If computer vision, or any other specialized branch of machine learning, is your primary concern, Caffe may be a more appropriate choice. However, if you're looking to learn a simple yet powerful framework, Keras should be your first choice.

Publicado : Mar 29, 2017

Descarga el PDF

 

 

 

English | Español | Português | 中文

Suscríbete al boletín informativo de Technology Radar

 

 

 

 

Suscríbete ahora

Visita nuestro archivo para leer los volúmenes anteriores