Enable javascript in your browser for better experience. Need to know to enable it? Go here.

Broad integration tests

Published : Apr 03, 2024
NOT ON THE CURRENT EDITION
This blip is not on the current edition of the Radar. If it was on one of the last few editions, it is likely that it is still relevant. If the blip is older, it might no longer be relevant and our assessment might be different today. Unfortunately, we simply don't have the bandwidth to continuously review blips from previous editions of the Radar. Understand more
Apr 2024
Hold ?

While we applaud a focus on automated testing, we continue to see numerous organizations over-invested in what we believe to be ineffective broad integration tests. As the term "integration test" is ambiguous, we've taken the broad classification from Martin Fowler's bliki entry on the subject which indicates a test that requires live versions of all run-time dependencies. Such a test is obviously expensive, because it requires a full-featured test environment with all the necessary infrastructure, data and services. Managing the right versions of all those dependencies requires significant coordination overhead, which tends to slow down release cycles. Finally, the tests themselves are often fragile and unhelpful. For example, it takes effort to determine if a test failed because of the new code, mismatched version dependencies or the environment, and the error message rarely helps pinpoint the source of the error. Those criticisms don't mean that we take issue with automated "black box" integration testing in general, but we find a more helpful approach is one that balances the need for confidence with release frequency. This can be done in two stages by first validating the behavior of the system under test assuming a certain set of responses from run-time dependencies, and then validating those assumptions. The first stage uses service virtualization to create test doubles of run-time dependencies and validates the behavior of the system under test. This simplifies test data management concerns and allows for deterministic tests. The second stage uses contract tests to validate those environmental assumptions with real dependencies.

Download the PDF

 

 

English | Español | Português | 中文

Sign up for the Technology Radar newsletter

 

Subscribe now

Visit our archive to read previous volumes