La mayoría de las aplicaciones basadas en modelos de lenguaje hoy en día confían en plantillas de prompts ajustadas manualmente para tareas específicas. DSPy, un framework para desarrollar tales aplicaciones, toma un enfoque diferente que prescinde de la ingeniería de prompts directa. En su lugar, introduce abstracciones de más alto nivel orientadas en el flujo del programa (a través de módulos
que se pueden poner en capas unos encima de otros), métricas que optimizar y datos con los que entrenar/probar. Entonces optimiza los prompts y/o pesos del modelo de lenguaje subyacente basándose en esas métricas que se han definido. El código resultante se parece mucho más al entrenamiento de redes neuronales con PyTorch. Encontramos que el enfoque que toma es estimulante por ser diferente y pensamos que vale la pena experimentar con él.