Enable javascript in your browser for better experience. Need to know to enable it? Go here.
La información en esta página no se encuentra completamente disponible en tu idioma de preferencia. Muy pronto esperamos tenerla completamente disponible en otros idiomas. Para obtener información en tu idioma de preferencia, por favor descarga el PDF aquí.
Última actualización : Apr 05, 2016
NO EN LA EDICIÓN ACTUAL
Este blip no está en la edición actual del Radar. Si ha aparecido en una de las últimas ediciones, es probable que siga siendo relevante. Si es más antiguo, es posible que ya no sea relevante y que nuestra valoración sea diferente hoy en día. Desgraciadamente, no tenemos el ancho de banda necesario para revisar continuamente los anuncios de ediciones anteriores del Radar. Entender más
Apr 2016
Probar ?

Predictive analytics are used in more and more products, often directly in end user-facing functionality. H2O is an interesting open source package (with a startup behind it) that makes predictive analytics accessible to development teams, offering straightforward use of a wide variety of analytics, great performance and easy integration on JVM-based platforms. At the same time it integrates with the data scientists’ favorite tools, R and Python, as well as Hadoop and Spark.

Nov 2015
Probar ?

Predictive analytics are used in more and more products, often directly in end user-facing functionality. H2O is an interesting open source package (with a startup behind it) that makes predictive analytics accessible to development teams, offering straightforward use of a wide variety of analytics, great performance and easy integration on JVM-based platforms. At the same time it integrates with the data scientists’ favorite tools, R and Python, as well as Hadoop and Spark.

May 2015
Evaluar ?

Predictive analytics are used in more and more products, often directly in end-user facing functionality. H2O is an interesting new open source package (with a startup behind it) that makes predictive analytics accessible to project teams due to its easy-to-use user interface. At the same time it integrates with the data scientists’ favourite tools, R and Python, as well as Hadoop and Spark. It offers great performance and, in our experience, easy integration at runtime, especially on JVM-based platforms.

Publicado : May 05, 2015

Descarga el PDF

 

 

 

English | Español | Português | 中文

Suscríbete al boletín informativo de Technology Radar

 

 

 

 

Suscríbete ahora

Visita nuestro archivo para leer los volúmenes anteriores