Enable javascript in your browser for better experience. Need to know to enable it? Go here.
La información en esta página no se encuentra completamente disponible en tu idioma de preferencia. Muy pronto esperamos tenerla completamente disponible en otros idiomas. Para obtener información en tu idioma de preferencia, por favor descarga el PDF aquí.
Última actualización : Nov 07, 2016
NO EN LA EDICIÓN ACTUAL
Este blip no está en la edición actual del Radar. Si ha aparecido en una de las últimas ediciones, es probable que siga siendo relevante. Si es más antiguo, es posible que ya no sea relevante y que nuestra valoración sea diferente hoy en día. Desgraciadamente, no tenemos el ancho de banda necesario para revisar continuamente los anuncios de ediciones anteriores del Radar. Entender más
Nov 2016
Probar ?

A Data Lake is an immutable data store of largely unprocessed "raw" data, acting as a source for data analytics. While the technique can clearly be misused, we have used it successfully at clients, hence motivating its move to trial. We continue to recommend other approaches for operational collaborations, limiting the use of the data lake to reporting, analytics and feeding data into data marts.

Apr 2016
Probar ?
Nov 2015
Evaluar ?

A Data Lake is an immutable data store of largely unprocessed 'raw' data, acting as a source for data analytics. Whereas the more familiar Data Warehouse filters and processes the data before storing it, the lake just captures the raw data, leaving it to the users of that data to carry out the particular analysis that they need. Examples include HDFS or HBase within a Hadoop, Spark or Storm processing framework. Usually only a small group of data scientists work on the raw data, developing streams of processed data into lakeshore data marts for most users to query. A Data Lake should only be used for analytics and reporting. For collaboration between operational systems we prefer using services designed for that purpose.

May 2015
Evaluar ?

An Enterprise Data Lake is an immutable data store of largely un-processed “raw” data, acting as a source for other processing streams but also made directly available to a significant number of internal, technical consumers using some efficient processing engine. Examples include HDFS or HBase within a Hadoop, Spark or Storm processing framework. We can contrast this with a typical system that collects raw data into some highly restricted space that is only made available to these consumers as the end result of a highly controlled ETL process.

Embracing the concept of the data lake is about eliminating bottlenecks due to lack of ETL developer staffing or excessive up front data model design. It is about empowering developers to create their own data processing pipelines in an agile fashion when they need it and how they need it—within reasonable limits—and so has much in common with another model that we think highly of, the DevOps model.

Jan 2015
Evaluar ?
Publicado : Jan 28, 2015

Descarga el PDF

 

 

 

English | Español | Português | 中文

Suscríbete al boletín informativo de Technology Radar

 

 

 

 

Suscríbete ahora

Visita nuestro archivo para leer los volúmenes anteriores