Un desafío común en el desarrollo de software es la generación de datos de prueba para entornos de desarrollo y prueba. Idealmente, estos datos deberían asemejarse lo más posible a los de producción, asegurando al mismo tiempo que no se exponga información personal identificable ni datos sensibles. Aunque esto puede parecer sencillo, la generación de datos de prueba está lejos de serlo. De ahí el motivo de nuestro interés en Synthesized — una plataforma que permite enmascarar y crear subconjuntos de datos de producción existentes o generar datos sintéticos estadísticamente relevantes. Se integra directamente en los procesos de compilación y ofrece enmascaramiento de privacidad, proporcionando anonimización a nivel de atributo mediante técnicas irreversibles de ofuscación de datos como hashing, substitución aleatoria o descarte. Synthesized también puede generar grandes volúmenes de datos sintéticos para pruebas de carga. Aunque incluye las funcionalidades esperadas de GenAI, su propuesta central aborda un desafío real y persistente para los equipos de desarrollo, lo que la convierte en una opción que vale la pena explorar.
