Enable javascript in your browser for better experience. Need to know to enable it? Go here.
La información en esta página no se encuentra completamente disponible en tu idioma de preferencia. Muy pronto esperamos tenerla completamente disponible en otros idiomas. Para obtener información en tu idioma de preferencia, por favor descarga el PDF aquí.
Publicado : Apr 24, 2019
NO EN LA EDICIÓN ACTUAL
Este blip no está en la edición actual del Radar. Si ha aparecido en una de las últimas ediciones, es probable que siga siendo relevante. Si es más antiguo, es posible que ya no sea relevante y que nuestra valoración sea diferente hoy en día. Desgraciadamente, no tenemos el ancho de banda necesario para revisar continuamente los anuncios de ediciones anteriores del Radar. Entender más
Apr 2019
Evaluar ?

Data scientists and engineers often use libraries such as pandas to perform ad hoc data analysis. Although expressive and powerful, these libraries have one critical limitation: they only work on a single CPU and don't provide horizontal scalability for large data sets. Dask, however, includes a lightweight, high-performance scheduler that can scale from a laptop to a cluster of machines. And because it works with NumPy, pandas and Scikit-learn, Dask looks promising for further assessment.

Descarga el PDF

 

 

 

English | Español | Português | 中文

Suscríbete al boletín informativo de Technology Radar

 

 

 

 

Suscríbete ahora

Visita nuestro archivo para leer los volúmenes anteriores