Los modelos de lenguaje de gran tamaño (LLM) han demostrado su utilidad en muchas áreas de aplicación, pero el hecho de que sean grandes puede ser una fuente de problemas: responder a una consulta requiere muchos recursos de cómputo, lo que hace que las consultas sean lentas y caras; los modelos son propietarios y tan grandes que deben ser alojados en una nube por un tercero, lo que puede ser problemático para los datos sensibles; y entrenar un modelo es excesivamente caro en la mayoría de los casos. El último problema puede resolverse con el patrón RAG, que evita la necesidad de entrenar y afinar los modelos básicos, pero los problemas de costo y privacidad suelen persistir. Por ello, cada vez hay más interés en los modelos de lenguaje pequeños (SLM). En comparación con sus hermanos más populares, tienen menos pesos y menos precisión, normalmente entre 3,5 y 10B parámetros. Investigaciones recientes sugieren que, en el contexto adecuado y si se configuran correctamente, los SLM pueden rendir o incluso superar a los LLM. Y su tamaño permite ejecutarlos en dispositivos periféricos. Ya hemos mencionado el Gemini Nano de Google, pero el panorama está evolucionando rápidamente, con Microsoft presentando su serie Phi-3, por ejemplo.