As informações desta página não estão completamente disponíveis no seu idioma de escolha. Esperamos disponibiliza-las integralmente em outros idiomas em breve. Para ter acesso às informações no idioma de sua preferência, faça o download do PDF aquí.
Publicado : Mar 29, 2017
NÃO ENTROU NA EDIÇÃO ATUAL
Este blip não está na edição atual do Radar. Se esteve em uma das últimas edições, é provável que ainda seja relevante. Se o blip for mais antigo, pode não ser mais relevante e nossa avaliação pode ser diferente hoje. Infelizmente, não conseguimos revisar continuamente todos os blips de edições anteriores do Radar.
Saiba mais
Mar 2017
Avalie
Knet.jl is the Koç University deep-learning framework implemented in Julia by Deniz Yuret and collaborators. Unlike gradient-generating compilers such as Theano and TensorFlow which force users into a restricted mini-language, Knet allows the definition and training of machine-learning models using the full power and expressiveness of Julia. Knet uses dynamic computational graphs generated at runtime for the automatic differentiation of almost any Julia code. We really like the support of GPU operations through the KnetArray type, and in case you don't have access to a GPU machine, the team behind Knet also maintains a preconfigured Amazon Machine Image (AMI) so you can evaluate it in the cloud.