Enable javascript in your browser for better experience. Need to know to enable it? Go here.

Corrida para o fine-tuning de LLMs

Publicado : Apr 03, 2024
NÃO ENTROU NA EDIÇÃO ATUAL
Este blip não está na edição atual do Radar. Se esteve em uma das últimas edições, é provável que ainda seja relevante. Se o blip for mais antigo, pode não ser mais relevante e nossa avaliação pode ser diferente hoje. Infelizmente, não conseguimos revisar continuamente todos os blips de edições anteriores do Radar. Saiba mais
Apr 2024
Evite ?

À medida que organizações buscam formas de fazer com que os modelos de linguagem de grande porte (LLMs) funcionem no contexto de seus produtos, domínios ou conhecimento organizacional, estamos vendo uma corrida para o fine-tuning de LLMs. Embora o fine-tuning possa ser uma ferramenta poderosa para aumentar a especificidade de tarefas em um caso de uso, em muitos casos ele não é necessário. Um dos erros mais comuns nessa pressa pelo fine-tuning é tentar tornar um aplicativo baseado em LLM ciente de conhecimento e fatos específicos ou do código-base de uma organização. Na grande maioria desses casos, usar uma forma de geração aumentada por recuperação (RAG) oferece uma solução melhor e uma relação custo-benefício mais vantajosa. O fine-tuning requer recursos computacionais consideráveis e expertise, além de introduzir desafios ainda maiores relacionados a dados sensíveis e proprietários do que a RAG. Há também o risco de subajuste (underfitting), quando não há dados suficientes para o fine-tuning, ou, menos frequentemente, de superajuste (overfitting), quando há dados em excesso, o que resulta em um desbalanceamento na especificidade de tarefas que você precisa. Analise atentamente esses prós e contras e considere as alternativas antes de se apressar para fazer o fine-tuning de um LLM para o seu caso de uso.

Baixe o PDF

 

 

 

English | Español | Português | 中文

Inscreva-se para receber o boletim informativo Technology Radar

 

 

Seja assinante

 

 

Visite nosso arquivo para acessar os volumes anteriores